

desdeo’s documentation

Contents:

	Background
	What is NIMBUS?
	Mathematical approach

	Classification in NIMBUS
	Classification background

	Classification using the widget
	Classifying the cylinder problem

	Classification without the widget

	Specifying subproblems

	Estimates of the ICV and Nadir

	What is NAUTILUS?

	Glossary

	Architecture

	Further Reading

	API documentation
	desdeo.core

	desdeo.method

	desdeo.optimization
	desdeo.optimization.OptimizationProblem

	desdeo.optimization.OptimizationMethod

	desdeo.preference

	desdeo.problem

	desdeo.problem.toy

	desdeo.result

	desdeo.utils

	desdeo-vis documentation [https://desdeo.readthedocs.io/projects/desdeo-vis/]

	DESDEO website [https://desdeo.it.jyu.fi/]

Indices and tables

	Index

	Module Index

	Search Page

Background

This section contains background and is meant to serve as a quick guide or
reference to the key concepts and practical issues required to make use of the
interactive multi-objective optimization techniques in DESDEO.

	What is NIMBUS?
	Mathematical approach

	Classification in NIMBUS
	Classification background

	Classification using the widget

	Classification without the widget

	Specifying subproblems

	Estimates of the ICV and Nadir

	What is NAUTILUS?

	Glossary

	Architecture

	Further Reading

What is NIMBUS?

As its name suggests, NIMBUS (Nondifferentiable Interactive Multiobjective BUndle-based optimization System) is a multiobjective optimization system being able to handle even nondifferentiable functions. It will optimize (minimize or maximize) several functions at the same time, creating a group of different solutions. One cannot say which one of them is the best, because the system cannot know the criteria affecting the ‘goodness’ of the desired solution. The user is the one that makes the decision. Usually, an example is the best way to make things clear:

Mathematical approach

Mathematically, all the generated solutions are ‘equal’, so it is important that the user can influence the solution process. The user may want to choose which of the functions should be optimized most, what are the limits of the objectives, etc. In NIMBUS, this phase is called a ‘classification’. We will discuss this procedure later.

Searching for the desired solution means actually finding the best compromise between many separate goals. If we want to get lower values for one function, we must be ready to accept the growth of another function. This is due to the fact that the solutions produced by NIMBUS are Pareto optimal. This means that there is no possibility to achieve better solutions for some component of the problem without worsening some other component(s).

Classification in NIMBUS

The solution process with NIMBUS is iterative. Since there is
usually not only one absolutely right solution, you are asked to
‘guide the solver to a desired direction’. The classification is a
process in which the desires of the user are expressed. You can
choose which of the function values should be decreased from the
current level and which of the functions are less important (i.e.
their values can be increased).

Classification background

In NIMBUS, preferences are expressed by choosing a class for each of the
objective functions.

When considering minimization, the class alternatives are:

	<

	The value should be minimized.

	<=

	The value should be minimized
until the specified limit is
reached.

	=

	The current value is OK.

	>=

	Value can be increased. Value
should be kept below the
specified upper bound.

	<>

	Value can change freely.

For maximization, directional signs are inverted:

	>

	The value should be maximized.

	>=

	The value should be maximized
until the specified limit is
reached.

	=

	The current value is OK.

	<=

	Value can be decreased. Value
should be kept above the
specified lower bound.

	<>

	Value can change freely.

If the second or the fourth alternative is selected, you are asked to
specify the limits: an aspiration level or
an upper/lower bound respectively for the
function values;.

	Aspiration level defines a desired value for the objective
function.

	Upper/lower bound defines the limit value that the function
should not exceed, if possible.

Since we are dealing with Pareto optimal
solutions (compromises) we must be willing to give up something in order to
improve some other objective. That is why the classification is feasible
only if at least one objective function is in the first two classes and at
least one objective function is in the last two classes.

In other words, you must determine at least one function whose value
should be made better. However that can not be done if there are no
functions whose value can be worsened.

Classification using the widget

You may find it useful to follow along with the cylinder notebook [https://desdeo.readthedocs.io/projects/desdeo-vis/en/latest/nimbus-cylinder.html] while reading this section.

The current solution is shown graphically as a parallel coordinate plot. The
classification can be made by either clicking points on the axes, or by
manually adjusting the classification selection boxes and limit fields.

By default, maximization and minimization are displayed in their original
units. You may wish to reformulate the problem so everything is minimized. This
means all maximized functions are negated. To enable this, click settings and
then check Reformulate maximization as minimization. To change the default,
add the following to the beginning of your notebooks:

from desdeo_vis.conf import conf
conf(max_as_min=True)

Let us assume that the function under classification should be minimized.
When you click on the corresponding axis, the system considers the axis
value at the point you clicked on as a new limit value and inserts the
numerical data into the limit field automatically. Selecting the point
below the current solution means that function should be minimized (<=)
until that limit is reached. If the point is selected above the current
solution, we allow the function value to increase (>=) to that limit.
Clicking a point below the whole bar means that the function should be
minimized as much as possible (<). Correspondingly, if the value is
selected above the whole bar, the function value can change freely (<>).
If the current value of some function is satisfactory (=), you can
express it by clicking the numeric value beside the bar.

In the case of maximization, the logic above is reversed. For example, if
you click a point above the current solution, it indicates that the
function should be maximized as much as possible. The desired extreme point
of each function is indicated by a small black triangle inside the top or
the bottom of each bar.

You can refine the graphical classification by changing the class of each
objective function using the selection box or adjusting the value in its
limit field.

Classifying the cylinder problem

This section walks you through creating a classification with the widget for
the cylinder notebook [https://desdeo.readthedocs.io/projects/desdeo-vis/en/latest/nimbus-cylinder.html].

The first solution we get from NIMBUS is reasonable. However, we may decide at
this point that we want to increase the cylinder’s volume as much as possible,
while still keeping the surface area and height difference low.

To do this, we select (<>) from the volume dropdown, because we allow
(for now) the volume to be varied freely. The next column describes the
solution for the surface area function. We want to know how much the volume
will be when the surface area is 1900, so we select (>=) from the
dropdown and enter 1900 into the box. For height difference we select (<=).

Classification without the widget

It is also possible to make a classification without the widget. Possibly
reasons you might do this are because you are constructing an artificial
decision maker, you are making your own preference selection widget, or
because you are unable to use Jupyter notebook. In this case, maximizations
are always reformulated as minimizations.

The preference information is specified using a Python object called
desdeo.preference.NIMBUSClassification. If we wanted to make
the same classification as above, it can be done like so:

 classification = NIMBUSClassification(method, [
('>=', 1205.843),
('<=', 378.2263),
('=', 0.0)]
)

Specifying subproblems

We can specify the maximum number of new solutions generated by the
classification given. It’s also possible to specify particular
scalarization functions. See
desdeo.method.NIMBUS.next_iteration() for more information.

Estimates of the ICV and Nadir

The result of the optimization is a vector, where the components are the
values of the objective functions. When optimizing the functions
individually and creating the vector of these values, we get the ICV; that is, the Ideal Criterion Vector.

The ICV tells us the best solution that exists for each objective, when the
functions are treated independently. However, the ICV vector is infeasible
because it is usually impossible to get the best of everything at the same
time - one must make compromises. For minimized functions ICV represents
the lower bounds in the set of Pareto optimal solutions and the values are
shown on the x-axis of the bar graph. For maximized functions ICV
represents the upper bounds in the Pareto optimal set and the values can be
found at the top of the bars. If the problem is complicated (that is,
nonconvex) the actual components of ICV are difficult to calculate. Thus,
to make sure, we refer to ICV as an estimated ICV.

The nadir is in some sense the opposite of the
ICV. It consists of component values for the ‘worst case’ solution
vector. For minimized functions Nadir represents the upper bounds in
the set of Pareto optimal solutions and the values can be found at
the top of the bars. For maximized functions Nadir represents the
lower bounds in the Pareto optimal set and the values are shown on
the x-axis of the bar graph. In practise, the Nadir vector is only
an estimation because it is also difficult (even impossible, in the
general case) to calculate.

The estimated components of the ICV and the Nadir vector are updated during
the calculations, whenever the solver founds improved values. If you know
the exact values or better estimates of the ICV and Nadir vectors, you can
correct the estimates of the system by setting the ideal and nadir
properties of your subclass of desdeo.problem.PythonProblem.

What is NAUTILUS?

Most interactive methods developed for solving multiobjective
optimization problems sequentially generate Pareto optimal solutions
and the decision maker must always trade-off to get a new
solution. Instead, the family of interactive trade-off-free methods
called NAUTILUS starts from the worst possible objective values and
improves every objective function step by step according to the
preferences of the decision maker.

Recently, the NAUTILUS family has been presented as a general NAUTILUS
framework consisting of several modules. To extend the applicability of
interactive methods, it is recommended that a reliable software implementation,
which can be easily connected to different simulators or modelling tools, is
publicly available. In this paper, we bridge the gap between presenting an
algorithm and implementing it and propose a general software framework for the
NAUTILUS family which facilitates the implementation of all the NAUTILUS
methods, and even other interactive methods. This software framework has been
designed following an object-oriented architecture and consists of several
software blocks designed to cover independently the different requirements of
the NAUTILUS framework. To enhance wide applicability, the implementation is
available as open source code.

Glossary

	Pareto optimality
	A criterion vector z* (consisting of the values of the objective functions at a point x*) is Pareto optimal if none of its components can be improved without impairing at least one of the other components. In this case, x* is also called Pareto optimal. Synonyms for Pareto optimality are efficiency, noninteriority and Edgeworth-Pareto optimality.

	Weak Pareto optimality
	A criterion vector z* (consisting of the values of the objective functions at a point x*) is weakly Pareto optimal if there does not exist any other vector for which all the components are better. In this case, x* is also called weakly Pareto optimal.

	Ideal criterion vector (ICV)
	The ideal criterion vector consists of the best possible values each objective function can achieve. The ICV represents the lower bounds of the set of Pareto optimal solutions. (That is, Pareto optimal set)

For minimized functions the ICV is given as the Lowest Value, and for maximized functions as the Highest Value.

	Current solution
	Current values of the objective functions.

	Nadir vector (or nadir point)
	Estimated upper bounds of the solutions in the Pareto optimal set. The nadir vector represents the worst values that each objective function can attain in the Pareto optimal set.

For minimized functions the Nadir is given as the Highest Value, and for maximized functions as the Lowest Value.

	(Sub)gradient
	A gradient of a function consists of its partial derivatives subject to each variable. A gradient vector exists for differentiable functions. For nondifferentiable functions a more general concept subgradient is used.

	Aspiration levels
	For each minimized function in the class <= and maximized function in the class >= you must specify an aspiration level. The aspiration level is the value which you desire function value should be decreased or increased to.

NOTE: For minimized functions the aspiration level must be between the lowest value and the current value of the objective function. For maximized function the aspiration level must be between the current and highest value of the objective function.

	Upper and lower bounds
	For each minimized function in the class >= and maximized function in the
class <= you must specify a boundary value. The upper or lower bounds are
the largest or smallest allowable objective function value respectively.

NOTE: For minimized function the upper bound value must be between the current and highest value of the objective function. For maximized function the lower bound value must be between the current and lowest value of the objective function.

Architecture

[image: Overview of the current DESDEO architecture.]
Overview of the current DESDEO architecture.

Further Reading

For an in-depth treatment of the whole field of multi-objective optimization,
including interactive and non-interactive methods, see:

Miettinen, K., Nonlinear multiobjective optimization, Springer Science & Business Media, 2012.

URL: https://www.springer.com/gp/book/9780792382782

For more information about the specific techniques implemented in DESDEO, see
primarily the publications on the DESDEO project page as well as the
other publications of the University of Jyväskylä optimization group.

API documentation

	desdeo.core

	

	desdeo.method

	This package contains methods for interactively solving multi-objective optimisation problems.

	desdeo.optimization

	This package contains methods for solving single-objective optimisation problems.

	desdeo.preference

	This package contains various classes acting as containers for preference information given by a decision maker about which objectives they are concerned with and to what degree.

	desdeo.problem

	This package contains tools for modelling multi-objective optimisation problems.

	desdeo.problem.toy

	This module contains simple “toy” problems suitable for demonstrating different interactive multi-objective optimization methods.

	desdeo.result

	This package contains classes for representing results obtained from running the methods in desdeo.method.

	desdeo.utils

	DESDEO Utilities

desdeo.core

desdeo.method

This package contains methods for interactively solving multi-objective
optimisation problems. Currently this includes the NIMBUS methods and several
variants of the NAUTILUS method.

desdeo.optimization

This package contains methods for solving single-objective optimisation
problems. These are contained in OptimizationMethod. It also contains
scalarisation functions, used for converting multi-objective problems into
single-objective fucntions. These are contained in OptimizationProblem. Both
are used as primitives by the methods defined in desdeo.method.

	desdeo.optimization.OptimizationProblem

	This module contains single objective optimization problems.

	desdeo.optimization.OptimizationMethod

	This module contains methods for solving single-objective optimization problems.

desdeo.optimization.OptimizationProblem

This module contains single objective optimization problems. Principally there
are scalarization functions for converting multi-objective problems into
single-objective functions.

desdeo.optimization.OptimizationMethod

This module contains methods for solving single-objective optimization problems.

desdeo.preference

This package contains various classes acting as containers for preference
information given by a decision maker about which objectives they are concerned
with and to what degree. It is sued by the methods defined in desdeo.method.

desdeo.problem

This package contains tools for modelling multi-objective optimisation
problems.

desdeo.problem.toy

This module contains simple “toy” problems suitable for demonstrating different
interactive multi-objective optimization methods.

desdeo.result

This package contains classes for representing results obtained from running
the methods in desdeo.method.

desdeo.utils

DESDEO Utilities

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 desdeo	

 	
 	
 desdeo.core	

 	
 	
 desdeo.method	

 	
 	
 desdeo.optimization	

 	
 	
 desdeo.optimization.OptimizationMethod	

 	
 	
 desdeo.optimization.OptimizationProblem	

 	
 	
 desdeo.preference	

 	
 	
 desdeo.problem	

 	
 	
 desdeo.problem.toy	

 	
 	
 desdeo.result	

 	
 	
 desdeo.utils	

Index

 D
 | M

D

 	
 	
 desdeo.core

 	module

 	
 desdeo.method

 	module

 	
 desdeo.optimization

 	module

 	
 desdeo.optimization.OptimizationMethod

 	module

 	
 desdeo.optimization.OptimizationProblem

 	module

 	
 	
 desdeo.preference

 	module

 	
 desdeo.problem

 	module

 	
 desdeo.problem.toy

 	module

 	
 desdeo.result

 	module

 	
 desdeo.utils

 	module

M

 	
 	
 module

 	desdeo.core

 	desdeo.method

 	desdeo.optimization

 	desdeo.optimization.OptimizationMethod

 	desdeo.optimization.OptimizationProblem

 	desdeo.preference

 	desdeo.problem

 	desdeo.problem.toy

 	desdeo.result

 	desdeo.utils

 # DESDEO README #

<p align=”center”>

</p>

DESDEO is a free and open source Python-based framework for developing and
experimenting with interactive multiobjective optimization.

[Documentation is available.](https://desdeo.readthedocs.io/en/latest/)

[Background and publications available on the University of Jyväskylä Research Group in Industrial Optimization web pages.](https://desdeo.it.jyu.fi)

Try in your browser

You can try a guided example problem in your browser: [choose how to deal with
river pollution using
NIMBUS](https://mybinder.org/v2/gh/industrial-optimization-group/desdeo-vis/master?filepath=desdeo_notebooks%2Fnimbus-river-pollution.ipynb).
You can also [browse the other
examples](https://mybinder.org/v2/gh/industrial-optimization-group/desdeo-vis/master?filepath=desdeo_notebooks).

What is interactive multiobjective optimization?

There exist many methods to solve [multiobjective
optimization](https://en.wikipedia.org/wiki/Multi-objective_optimization)
problems. Methods which introduce some preference information into the solution
process are commonly known as multiple criteria decision making methods. When
using so called [interactive
methods](https://en.wikipedia.org/wiki/Multi-objective_optimization#Interactive_methods),
the decision maker (DM) takes an active part in an iterative solution process
by expressing preference information at several iterations. According to the
given preferences, the solution process is updated at each iteration and one or
several new solutions are generated. This iterative process continues until the
DM is sufficiently satisfied with one of the solutions found.

Many interactive methods have been proposed and they differ from each other
e.g. in the way preferences are expressed and how the preferences are utilized
when new solutions. The aim of the DESDEO is to implement aspects common for
different interactive methods, as well as provide framework for developing and
implementing new methods.

Installation

From conda-forge using Conda

This is the recommended installation method, especially for those who are
newer to Python. First download and install the [Anaconda Python
distribution](https://www.anaconda.com/download/).

Next, run the following commands in a terminal:

conda config –add channels conda-forge
conda install desdeo desdeo-vis

Note: if you prefer not to install the full Anaconda distribution, you can
install [miniconda](https://conda.io/miniconda.html) instead.

From PyPI using pip

Assuming you have Pip and Python 3 installed, you can [install desdeo from
PyPI](https://pypi.org/project/desdeo/) by running the following command in
a terminal:

pip install desdeo[vis]

This installs desdeo and
[desdeo-vis](https://github.com/industrial-optimization-group/desdeo-vis),
which you will also want in most cases.

Getting started with example problems

To proceed with this section, you must [first install Jupyter
notebook](http://jupyter.org/install). If you’re using Anaconda, you already
have it!

You can copy the example notebooks to the current directory by running:

python -m desdeo_notebooks

You can then open them using Jupyter notebook by running:

jupyter notebook

After trying out the examples, the next step is to [read the full
documentation.](https://desdeo.readthedocs.io/en/latest/)

Development

Set-up

You should install the git pre-commit hook so that code formatting is kept consistent automatically. This is configured using the pre-commit utility. See [the installation instructions](https://pre-commit.com/#install).

If you are using pipenv for development, you can install desdeo and its
dependencies after obtaining a git checkout like so:

pipenv install -e .[docs,dev,vis]

Tests

Tests use pytest. After installing pytest you can run:

pytest tests

Release process

	Make a release commit in which the version is incremented in setup.py and an entry added to HISTORY.md

	Make a git tag of this commit with git tag v$VERSION

	Push – including the tags with git push –tags

	Upload to PyPI with python setup.py sdist bdist_wheel and twine upload dist/*

 _images/overview.png
USER INTERFACE

| PREFERENCE ELICITATION BLOCK |

[Preference elicitation module \

Preferences from the DM

Direction of simultaneous
improvement

Most preferred point

Information for the DM

Next iteration point

Additional information

ALGORITHM BLOCK

Closeness equation

‘ Core module ‘ Solver module I
7 [/ ””””” \\
N ['| Generation of one | |
\ I ASF problem (2) | |
} : or several iteration —v—'l :
| poi i
! J Lpoints I'| 1 | econstraint |
i ; ! | prob i
} i | Additional i » | problem (3) j
1 l\ information i M -
I \ 7
| 3 '
! —
le } Utilities
|
|
|
|

Iteration point formula

EXTERNAL

- Single objective optimization technique
- Aposteriori algorithm

- Clustering method

- Weight vectors generation methodology

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 desdeo’s documentation

 		
 Background

 		
 What is NIMBUS?

 		
 Mathematical approach

 		
 Classification in NIMBUS

 		
 Classification background

 		
 Classification using the widget

 		
 Classification without the widget

 		
 Specifying subproblems

 		
 Estimates of the ICV and Nadir

 		
 What is NAUTILUS?

 		
 Glossary

 		
 Architecture

 		
 Further Reading

 		
 API documentation

 		
 desdeo.core

 		
 desdeo.method

 		
 desdeo.optimization

 		
 desdeo.optimization.OptimizationProblem

 		
 desdeo.optimization.OptimizationMethod

 		
 desdeo.preference

 		
 desdeo.problem

 		
 desdeo.problem.toy

 		
 desdeo.result

 		
 desdeo.utils

